
Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 113

Tailoring Static Code Analysis for Top 25 CWE

in Python

Ali Shihab1,a) Mafaz Alanezi2,b)

1 Dept. of Computer Science, College of Computer Science and

Mathematics, University of Mosul, Iraq

2 ICT Research Unit, Computer Center, University of Mosul, Iraq

a)ali.22csp39@student.uomosul.edu.iq

b)mafazmhalanezi@uomosul.edu.iq

Received: 15 / 10/ 2024 Accepted: 20 / 11/ 2024

 Published: 17 / 12 / 2024

Abstract

The topic of security for computers is of significant importance.

Over the past decade, countless cybercrimes have been executed

by exploiting software flaws. This issue has led to considerable

social stress, substantial losses, and higher interest in security.

Vulnerabilities in applications developed in various programming

languages can be identified using various methodologies and

techniques. We can employ static or dynamic methods for analysis

to detect vulnerabilities. Bandit is a tool for static analysis designed

to identify security vulnerabilities in Python code, examining a

defined range of issues. This study introduces an additional

collection of vulnerabilities, specifically the top 25 CWE, to

enhance the tool's detection capabilities. The approach involves

analyzing Python code and constructing an Abstract Syntax Tree

(AST) using the AST library in Python.

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE.

http://creativecommons.org/licenses/by/4.0/

mailto:ali.22csp39@student.uomosul.edu.iq
mailto:mafazmhalanezi@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 114

 By traversing the nodes of the tree and gathering information

regarding the code's characteristics, potential vulnerabilities are

identified based on predefined checks for each scenario. The tool's

capability for predicting all the incorporated scenarios was

demonstrated after the completion of the tests added to it.

Keywords: python code analysis, software security, static

analysis, vulnerability detection.

Introduction

Software development requires a critical practice of writing secure

coding in order to ensure that the software is designed to be

resistant to potential threats. This process requires that there be

built-in security measures to prevent common problems in the

coding life cycle such as unauthorized access, injection attacks,

etc.(Nembhard et al., 2019).

Software defects that are targeted and exploited in security attacks

are called security vulnerabilities(Kiran et al., 2021). Security

vulnerabilities have significant impacts on millions of consumers

and threaten computer systems to operate securely(G. Lin et al.,

2020). Undetected vulnerabilities can be exploited by hackers and

cause significant harm to users(Fan et al., 2020).

Software analysis includes dynamic analysis and static analysis.

Possible programming errors in the code, as well as security

weaknesses, are discovered through static analysis if the process is

completed without the need to execute the code(da Costa et al.,

2022) (Nachtigall & Bodden, 2019)

Programming languages such as C and C++ are pivotal in the static

analysis process because their type systems provide additional

details to the analyst because they are static type systems, unlike

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 115

dynamic type systems such as Python, where there is an increasing

demand for them(Gulabovska & Porkolab, 2019).

There are many analysis tools currently available that can statically

analyze code written in Python(Kiska, 2021). The current analysis

tools that are widely used in static analysis of the Python

programming language are pyflakes, mypy, pylint and others(da

Costa et al., 2022). Another important tool used to find

vulnerabilities in Python code is the bandit tool(Guo et al., 2021).

CWE, which is a classification and organization system for

common vulnerabilities, helps developers identify software

vulnerabilities by assigning a single CWE identifier to each

vulnerability(C. Lin et al., 2023).

It has been observed that static analysis tools work to find

vulnerabilities in software written in the Python programming

language, as some of these tool’s focus on code styling issues and

do not focus on security issues, and others focus on security issues,

but they lack coverage of many common vulnerabilities. For

example, the bandit tool does not detect many of the top 25 CWEs.

The goal of the research is to add the top 25 common

vulnerabilities (CWEs) to the bandit tool. After adding custom

checks, the tool now covers a wider range of common

vulnerabilities and is able to detect the top 25 CWEs.

The remainder of this paper is structured as follows: Section 2

covers related works. Section 3 demonstrates top 25 CWE and

python. Section 4 describes the methodology. Section 5 includes

results and discussion. Section 6 provides the conclusion.

Related Works

Static code analysis is a method used when we want to evaluate

the source code without having to execute the programs. The

purpose of the analysis is to discover errors, issues related to code

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 116

quality, and security vulnerabilities. It is of great benefit in

evaluating the efficiency of programs and indicating the aspects in

which programmers need to strengthen their skills to improve their

programs(Souza, 2020).

(Ziems, 2021) improved the detection of security vulnerabilities in

software by applying advanced deep learning models, particularly

transformer-based models such as BERT. The research treats

source code as text and models the detection process as a natural

language processing (NLP) problem. By leveraging these NLP

techniques, the researchers aim to detect vulnerabilities more

effectively and efficiently than traditional methods like static and

dynamic code analysis, which are often inaccurate and inefficient.

The study also explores the use of transfer learning from written

English to source code, highlighting its effectiveness in classifying

security vulnerabilities in C/C++ code.

(Duan et al., 2019) developed an advanced system for detecting

fine-grained software vulnerabilities in code with very slight

differences between vulnerable and non-vulnerable versions. The

study aims to improve the accuracy of vulnerability detection by

introducing VulSniper, a model that uses an attention neural

network to focus on critical features in the code. This approach

allows VulSniper to effectively capture subtle distinctions in code

that may lead to vulnerabilities, such as minor changes in

conditions that could cause buffer overflows or resource

management errors. The ultimate objective is to surpass the

limitations of traditional static analysis methods, which often

struggle with false positives and false negatives, by utilizing

attention mechanisms and deep learning to enhance vulnerability

detection accuracy, particularly for fine-grained issues.

(Kronjee et al., 2018) combined data-flow analysis techniques with

machine learning to create a static analysis method for detecting

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 117

software vulnerabilities, particularly SQL injection (SQLi) and

Cross-Site Scripting (XSS) vulnerabilities in PHP applications.

The study aims to improve the accuracy and efficiency of detecting

these vulnerabilities by using control-flow graphs (CFGs) to

extract features from code samples, which are then used to train

various probabilistic machine learning classifiers. By leveraging

both data-flow analysis and machine learning, the research seeks

to address the limitations of existing static analysis tools and

enhance the detection of vulnerabilities in real-world and open-

source software applications.

(Cao et al., 2020) developed a deep learning-based method for

detecting software vulnerabilities more efficiently and accurately.

The researchers introduce a hybrid model that combines a

convolutional neural network (CNN) with a bidirectional long

short-term memory (Bi-LSTM) network, and apply a discrete

Fourier transform (DFT) to convert source code into the frequency

domain. This approach helps in capturing significant patterns in

the code to better detect vulnerabilities. The key objective is to

improve the detection of common software vulnerabilities, such as

buffer errors and resource management errors, by focusing on both

local and global features of the code, while also addressing

challenges related to feature extraction and the diverse nature of

vulnerabilities in modern software systems.

(Mahyari, 2022) designed a deep learning-based method to detect

software vulnerabilities in source code. Specifically, the research

focuses on a hierarchical approach that first identifies whether a

piece of source code is vulnerable and then pinpoints the exact

lines of code responsible for the vulnerability. By using techniques

inspired by natural language processing (NLP) and representing

source code as binary vectors, the model leverages a bidirectional

LSTM to capture dependencies between lines of code. The key

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 118

objective is to improve accuracy and reduce false alarms in

detecting vulnerable lines of code, which is crucial for mitigating

potential cyberattacks.

(Piran, 2022) investigated the existence of security vulnerabilities

in software that shares similar code, such as cloned or near-

duplicate code fragments. The study aims to empirically analyze

vulnerabilities in C/C++ projects to determine whether the same

security issues occur across applications that reuse or share similar

code or business logic. By examining a dataset of 315 open-source

projects, the researchers aim to identify common security flaws

and assess the prevalence of vulnerabilities in similar code

structures. Ultimately, the research seeks to provide insights for

improving automated vulnerability detection tools by tailoring

them to specific classes of vulnerabilities frequently found in

cloned or similar code fragments.

(Alsamel, 2023) proposed an automated tool that helps security

engineers and developers classify and label software vulnerability

reports with appropriate Common Weakness Enumeration (CWE)

tags. The tool, called Vulnerability Report Tagger (VrT), leverages

machine learning algorithms, specifically the FastText classifier,

to automatically assign vulnerability types based on the

descriptions found in the National Vulnerability Database (NVD).

The purpose of VrT is to reduce the manual effort and potential

errors involved in tagging vulnerabilities, streamline the

vulnerability management process, and improve the prioritization

of security fixes. This research aims to enhance the efficiency and

accuracy of handling cybersecurity threats, making it easier for

security professionals to manage and respond to new

vulnerabilities.

(Sun & Wang, 2023) improved the process of analyzing and

understanding vulnerabilities by using a knowledge graph-based

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 119

system that links various vulnerability databases and infers hidden

relationships between vulnerabilities. The research focuses on

building a vulnerability knowledge graph from CVE, CWE,

CAPEC, and other data sources to enhance vulnerability

correlation and prediction. This knowledge graph, combined with

chain reasoning, allows the researchers to detect complex,

compound vulnerabilities and uncover hidden links between

software products and their associated vulnerabilities. The main

objective is to improve the accuracy and efficiency of vulnerability

scanning and provide better insights for cybersecurity

management.

(Kang & Son, 2022) developed an advanced static analysis

framework, named Tracer, for detecting recurring software

vulnerabilities by focusing on both syntactic and semantic

similarities in the code. The research aims to address the

limitations of existing vulnerability detection methods, which

primarily focus on syntactic similarities and fail to detect

vulnerabilities that recur with different syntactic structures but

share the same underlying behavior. Tracer uses taint analysis and

inter procedural data dependency to identify vulnerable code

patterns and create vulnerability signatures, allowing it to detect

both known and semantically similar, recurring vulnerabilities in

new programs. The main objective is to improve the accuracy,

robustness, and scalability of vulnerability detection in large-scale

software projects.

(Id & Wang, 2024) suggested a method that improves the detection

and prediction of software vulnerabilities by utilizing an enhanced

information gain (IG) algorithm within a deep neural network

(DNN) framework. The study aims to address the challenge of

incomplete vulnerability data and improve both the accuracy and

speed of vulnerability detection. By using techniques such as

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 120

Dropout to prevent overfitting, the model enhances its ability to

extract and predict vulnerabilities effectively.

Below is a set of analysis tools for Python code, along with an

explanation of some of the features and capabilities of these

tools(Kiska, 2021):

1- Pylint: It detects errors, checks code smells, enforces coding

standards, and provide refactoring. In addition, pylint calculates

the complexity of the code and provides details of potential

problems through a report.

2- Pyflakes: This tool focuses its work on finding coding errors and

its performance is faster than other tools because it does not impose

a style check, thus avoiding many false positives.

3- DeepSource: The tool provides code reviews and produces results

with low false positive rates. It has an automatic repair feature, so

it fixes problems automatically. The tool identifies issues such as

unnecessary code, which leads to improved performance.

4- SonarQube: This tool focuses on code quality and detects code

smells, duplicate copying, and security vulnerabilities. The tool

provides detailed reports on issues such as duplicate blocks and

function complexity because it has a large set of rules for analyzing

Python code.

5- Bandit: It is a tool designed to find security vulnerabilities in code

written in Python. It scans the code to find common vulnerabilities

such as handling input insecurely, using weak encryption

algorithms, etc. bandit has great adaptability because it accepts

new checks to be added to it to meet the security requirements of

developers.

6- DeepCode: This tool uses machine learning in the analysis process.

It identifies issues related to deprecated modules, unprotected

calls, and the use of unsafe parsing processes.

 Table 1 shows comparisons between these tools:

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 121

TABLE 1. Comparison for Static Code Analysis Tools

Tool Focus
False

Positives
Performance

Style

Checks

Unique

Features

Bandit
Security

vulnerabilities
Low Moderate No

Security-

focused,

plugin-based

Pylint

Code style,

complexity,

and errors

Moderate
Slow (high

complexity)

Yes (PEP8

standards)

Customizable

limits

(complexity

and standards)

Pyflakes Coding errors Low Fast No
Fast error

detection

DeepSource

Code review,

performance

improvement,

autofix

Very Low Moderate

Yes

(Autopep8,

Black)

Autofix

feature,

integration by

CI/CD

SonarQube

Code smells,

technical

debt, security

vulnerabilities

Moderate

(depending

on rules

enabled)

Slow

(depending

on rules

enabled)

Yes (by all

rules

enabled)

Comprehensive

code quality

metrics

DeepCode

Real-time

feedback by

AI-driven

analysis

Low Fast No

AI-based

analysis, real-

time feedback

Top 25 Cwe and Python

A list that is compiled annually, the Top 25 CWE vulnerabilities

highlights the software security flaws that are the most prevalent

and potentially most serious. As a result of these vulnerabilities,

which are weaknesses in the design or implementation of software,

attackers have the ability to take advantage of them in order to

cause damage to systems or obtain improper access to data. For the

purpose of assisting in the prioritization of security efforts and the

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 122

development of methods for defense against attacks, the list is

critically important for software developers and cybersecurity

professionals(Wunder et al., 2024).

As a result of the fact that they are the most widespread and severe

security flaws in software that may be exploited by attackers, the

Top 25 CWE vulnerabilities are extremely important. These

vulnerabilities frequently result in major implications, such as the

shutting down of the system, the unauthorized access of data, or

the complete control over the system. Because they are simple to

locate and exploit, the vulnerabilities are serious. Furthermore,

they affect a wide variety of systems, which makes them frequent

targets for attackers. The address of these vulnerabilities is critical

for the maintenance of software security and the prevention of

exploits and breaches that are significant(Fu, 2022).

The CWEs particularly pertinent to Python comprise the

following:

1. CWE-787: Buffer Overflow – An interaction with an external

library written in C or another lower-level language may

continue to present buffer overflow vulnerabilities, despite the

fact that Python's dynamic memory management assists in

minimizing the danger of buffer overflows. Memory corruption

and the likelihood of unauthorized code execution can arise as a

result of buffer overflows, which occur when the memory

capacity of the buffer is exceeded(Shahab et al., 2020).

2. CWE-79: Cross-Site Scripting (XSS) – Web applications

written in Python that do not effectively sanitize user inputs are

susceptible to cross-site scripting (XSS) attacks. These attacks

involve the injection of malicious scripts within web pages that

are seen by other users. This could result in the theft of data or

the hijacking of a session(Note, 2012).

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 123

3. CWE-20: Improper Input Validation – Is a widespread

vulnerability in Python applications which do not perform an

adequate check on the inputs provided by users. This

vulnerability can result in a variety of potential exploits, such as

injection attacks(Bojanova et al., 2020).

For a number of different reasons, the dynamic

typing, dependency on external libraries, and flexibility, the

Python has substantial challenges when it comes to detecting

vulnerabilities:

1. Dynamic Typing: Within the Python programming language, the

types of variables are not clearly specified. This flexibility might

result in runtime mistakes and security vulnerabilities which are

not discovered until the program is executed. The shortage of

static type checking causes it difficult to detect issues such as

type mismatches or accidental type changes at an early stage.

This, in turn, increases the likelihood that bugs and

vulnerabilities will go unnoticed until they produce a failure or

a security concern(Chen et al., 2020).

2. Flexibility: The permissive syntax of Python makes it possible

to construct software quickly, but it also makes it simple to add

security flaws. This is especially true when combined with

complicated dynamic features such as dynamic attribute

allocation or introspection. Due to this flexibility, automated

vulnerability detection is made more difficult, and static

analysis is rendered less effective(Monat & Mine, 2020).

3. Reliance on External Libraries: An additional layer of security

risk is introduced by the extensive environment of third-party

libraries that Python provides. It is difficult to detect

vulnerabilities within these libraries because of the different

codebases and the difficulty of managing dependencies.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 124

Vulnerabilities from these libraries might spread to programs

that are dependent on them(Shuanghe et al., 2019).

Methodology

Design Overview

In this work, a system was built, which is an expansion of the

bandit tool, where checks were added to perform a test for

common weaknesses (top 25 CWEs). The python code is

received into the system and it analyzes the code, finds the

weaknesses in it, and indicates the degree of severity and

confidence for them.

Rule Set Tailoring for Top 25 CWE

For the purpose of ensuring that possible software vulnerabilities

are recognized in an accurate and efficient manner, a set of

processes was followed in order to build rules for evaluating code

and finding software vulnerabilities. In order to develop a testing

rule, the following fundamental procedures were carried out:

Understanding the Intended Security Vulnerability

To begin the process of developing a testing rule, the first thing

you need to do is recognize and comprehend the vulnerability that

you want to find. This was accomplished using the following

studying:

1. The nature and type of the vulnerability (such as SQL Injection,

path traversal, or Buffer Overflow).

2. How the vulnerability happens (for instance, the user entering

data into the database without taking appropriate precautions).

3. Consequences for exploiting the vulnerability include

(unauthorized command execution, information sharing, etc.).

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 125

Identifying Code Patterns

Upon identifying the vulnerability, the code patterns that might

cause it were determined. This stage involved identifying the

structures or behaviors analyzed in the code. for instance:

- The ast library was utilized to perform an analysis of the source

code and search for common patterns that cause SQL Injection

vulnerabilities. This was done in order to identify instances of

SQL Injection that occurred during the process of code analysis.

Because untrusted input is injected inside SQL queries without

adequate sanitization, these vulnerabilities occur. As a result,

attackers are able to execute SQL queries that are not authorized.

The following is a list of the discovery steps:

1. Identifying untrusted inputs: Look for places in the code that

take data from the user, like request.GET, request.POST, along

with additional sources that can't be trusted.

2. Search for SQL queries: It is important to check for SQL queries

that were produced using string concatenation rather than by

having parameterized queries.

3. Verify proper sanitization: In the process of building SQL

queries, it is imperative to make certain that potentially

dangerous functions like .format(), +, or % aren't used with user

input.

For instance, if the next code snippet is inputted into the scanning

tool:

The result will indicate the potential presence of a SQL Injection

vulnerability in the code.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 126

- Source code analysis was employed to identify instances of hard-

coded credentials by searching for patterns indicative of the direct

inclusion of credentials, such as passwords, user names, and secret

keys, within the code. This vulnerability is risky since it leads the

system to exploitation if the attacker acquires access to the code.

The steps for discovery are as follows:

1. Determine potential locations for credential utilization: Identify

variables that include terms like password, api_key, etc.

2. Identify definitions of variables that explicitly include written

credentials: Verify if these variables have been explicitly set in

the code.

3. Guarantee the lack of sterilization or suitable protection:

Investigate the lack of any mechanism for data sterilization or

secure downloading.

For instance, if the next code snippet is inputted into the scanning

tool:

This will be demonstrated by the result, which will show that

credentials are inserted right into the code.

- Source code analysis was employed to identify instances of

Missing Authorization by looking for patterns that signify the

lack of requisite authorization. This vulnerability arises when

the system permits users to execute activities or obtain

information without verifying their requisite permissions. The

steps for discovery are as follows:

1. Determine points of protection that based upon authorization:

Identify areas in the code that require protecting, such as

accessing confidential information or executing critical

operations.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 127

2. Search for authorization checks: Examine for the existence of

authorization functions, including check_permissions,

is_authorized, as well as other tailored authorization decorators.

3. Recognizing the lack of authorization: Identify instances where

functions are executed or sensitive data is obtained without

authorization verification.

For example, if the following code snippet was entered into the

tool for testing:

On the basis of the result, it would be clear that authorization was

absent.

The dynamic typing of Python and its dependence on external

libraries present numerous challenges that complicate

vulnerability detection:

• Dynamic Typing: Python does not require type declarations,

allowing variables to alter their types during runtime. This

complicates static analysis, as type-related defects or

vulnerabilities, like type mismatches, might only become

apparent during execution. The absence of static type checking

may result in unnoticed faults until execution, hence elevating

the likelihood of runtime mistakes or security vulnerabilities.

• Reliance on External Libraries: There is a major risk involved

because the Python ecosystem is primarily dependent on

libraries that are provided by third parties. The management of

dependencies is difficult, and libraries have the potential to

expose vulnerabilities. As a result of the enormous number of

dependencies, it is difficult to verify that all of the libraries that

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 128

are being used are safe and free from bugs. This is because

potential security flaws can be concealed within external

packages.

Integration with Bandit

The architecture needs to take into consideration a number of

different things in order to successfully incorporate CWE rules

with the Bandit tool for identifying security vulnerabilities in

Python. The following is an in-depth explanation to the

architecture, with particular focus on the alterations that are

required:

1. Modifications to AST Traversal

Adding Hooks: In order for Bandit to be able to activate CWE-

specific rules, its AST traversal scheme will need to be

modified. Hooks are used to map CWE patterns with particular

AST nodes. For example, hooks can be used to identify

vulnerable functions such as eval() or exec(), which could be

potential indicators of a vulnerability.

2. Construction of Plugins for the CWE Rules

- The CWE Rules as Individual Plugins: A different plugin will

be used to implement each CWE rule. These plugins will check

the source code for security flaws associated with that particular

CWE.

- Configurable Rules: Users must have the capability to either

enable or disable particular CWE rules via configuration files to

tailor the scanning procedure.

- Severity Levels: Every CWE rule plugin has to contain a

severity rating (high, medium, low) determined by the potential

effect of the vulnerability.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 129

3. API Modifications

CWE Rule Configuration: The Bandit API requires an upgrade

to facilitate the activation and configuration of CWE rules.

4. Custom Hooks

Support for Custom Plugins: It should be possible for

developers to construct and register their own custom CWE

rules using the API. This is something that can be accomplished

by extending the design of Bandit's plugins, which will allow

users to produce their own security tests.

5. Improved Reports

- CWE-Specific Reports: It is important for reports to include

CWE identifiers and descriptions for each vulnerability that has

been discovered. Additionally, reports should include links to

CWE documentation in order to offer developers with additional

context.

- Incorporation with Vulnerability Databases: Bandit should

make it possible to link vulnerabilities that have been discovered

to external databases, such as the CWE database maintained by

MITRE, in order to provide more detailed remedial assistance.

A custom plugin is created in order to work on discovering a

specific case of CWEs that was not originally present in bandit.

This is done by understanding the vulnerability and the reasons

that lead to it. The custom plugin is saved in a Python file with

a specific name that indicates the scan it is performing, and it is

called through the main file (main_code.py) when there is an

analysis process to discover vulnerabilities in a specific code.

Dataset for Testing and Verification

For the purposes of testing and Verification, the datasets were

selected using open-source Python projects and known vulnerable

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 130

codebases (for example, vulnerable web applications and GitHub

repositories).

Evaluation Criteria

• After custom plugins were added to the analysis tool to detect cases

of the top 25 CWEs, the detection range of the tool expanded and

it is able to cover all cases of the top 25 CWEs.

• The tailored tool has good capabilities and outperforms other

analysis tools such as Pylint, Flake8 and others in discovering

vulnerabilities, especially security issues.

Results and Discussion

The findings in table 2 demonstrate a tool's efficacy for

determining the Top 25 CWE vulnerabilities:

TABLE 2. The results.

F1

Scor

e

Recal

l

Precisio

n

Accurac

y

F

N

T

N

F

P

T

P

CWE

Name

CW

E ID

0.90 1 0.83 0.90 0 4 1 5

Cross-

Site

Scripting

(XSS)

CWE

-79

0.83 1 0.71 0.80 0 3 2 5
SQL

Injection

CWE

-89

0.80 0.8 0.8 0.80 1 4 1 4
Path

Traversal

CWE

-22

0.90 1 0.83 0.90 0 4 1 5

Cross-

Site

Request

Forgery

CWE

-352

0.88 0.8 1 0.90 1 5 0 4

Improper

Input

Validatio

n

CWE

-20

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 131

where:

1. CWE ID: The distinct identifier given to every vulnerability within

the Common Weakness Enumeration.

2. CWE Name: The name or brief description of the vulnerability.

3. True Positives (TP): The number of accurately recognized

vulnerabilities.

4. False Positives (FP): The number of vulnerabilities that were

incorrectly identified.

5. True Negatives (TN): the number of samples with no

vulnerabilities undetected.

6. False Negatives (FN): The number of vulnerabilities which were

not found by the tool but are present in the system.

7. Accuracy: It is the ratio between the number of correct predictions

over the total number of predictions.

8. Precision: The precision with which the tool finds each

vulnerability.

9. Recall: The recall or sensitivity of the tool for each vulnerability.

10. F1 Score: Taking the harmonic mean for recall and precision, we

can see how well the tool handled each vulnerability as a whole.

Here is how the metrics were computed(C. Lin et al., 2023):

- Precision is computed as: Precision = TP / (TP + FP)

- Recall is computed as: Recall = TP / (TP + FN)

- Accuracy is computed as: (TP + TN) / (TP + FP + TN + FN)

- F1 Score is computed as: F1 Score = 2 * (Precision * Recall) /

(Precision + Recall)

Bandit's strengths for discovering vulnerabilities involve the

following:

1. Effective automated analysis: It discovers Python vulnerabilities,

including input injections and insecure functions and others.

2. Python-focused: It finds security flaws that are unique to this

language in an accurate manner.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 132

3. Comprehensive scanning: A large variety of common security

flaws are addressed.

4. Customizable checks: Customizing checks to match the unique

requirements of each project is made possible.

5. CI/CD integration: The integration of this tool into development

pipelines is simple, and it guarantees continuous security.

Considering all of these advantages, Bandit is a highly efficient

tool for improving code security.

The enhanced capability of Bandit to discover CWE vulnerabilities

which are generally challenging to detect in Python consist of

multiple aspects:

- Analysis of external libraries: Bandit can find dangerous uses of

external libraries, and that is hard to do by hand.

- Identification of dealing with files vulnerabilities: It detects flaws

in file management, including unsafe path handling, and this may

result in vulnerabilities that allow Path Traversal attacks.

- Identification of input injection vulnerabilities: Bandit detects

regions sensitive for inputting injection vulnerabilities, which

might be challenging to identify without meticulous code

examination.

- Identification of risky function usage: It identifies the utilization

of risky functions or methods, such as eval, which may be

vulnerable to exploitation when untrusted inputs are provided.

- Management of environmental variables and sensitive keys:

Bandit is able to identify instances of sensitive variables or secret

keys being leaked in the code, which is an issue that is frequently

missed during the development process.

Because of these features, Bandit is a powerful tool for detecting

vulnerabilities that are difficult to identify, especially on projects

that are large or complex.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 133

Utilizing the Bandit tool to identify vulnerabilities associated

with the CWE Top 25 may present challenges in mitigating false

negatives or false positives. These instances include:

1. Limited contextual analysis: Bandit employs static analysis, which

may result in an incomplete contextual awareness of variable or

function utilization during runtime. This may lead to false

positives, like identifying a non-existent threat due to inadequate

comprehension of dynamic data flow.

2. Logical vulnerabilities: Business logic issues, including improper

permission or logical validation mistakes, are challenging to

identify with tools like Bandit, as they necessitate an in-depth

knowledge of an application's context and objectives. This could

result in false negatives.

3. Highly strict vulnerability detection: Bandit may exhibit excessive

sensitivity to particular vulnerabilities, such as the utilization of

functions like eval or exec, which could lead to false positives

whenever these functions are employed correctly and securely in

specific scenarios.

4. Resource and memory management: Resource management

vulnerabilities, such as memory or file leaks may be complicated

and hard to identify using static analysis, resulting in false

negatives.

5. Use of external libraries: Bandit may encounter difficulties in

detecting vulnerabilities within external libraries or those arising

from interactions between numerous libraries, particularly when

the source code of these libraries is inaccessible for examination,

resulting in false negatives.

6. Complex input validation: If Bandit uses bespoke techniques for

input validation, it is possible that it will overlook vulnerabilities

that need deep input validation. Some instances of these

vulnerabilities include SQL injection and cross-site scripting. It is

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 134

possible that this could result in false negatives or false positives

when the validation for the input is not made explicitly visible.

Future enhancements will involve the incorporation of extra CWEs

and the development of future Python versions.

Conclusion

After work was done on adding a set of tests that detect cases of

the top 25 CWEs to the bandit tool, which is one of the analysis

tools that performs static analysis on codes written in the Python

language and which focuses when analyzing security issues in the

code, the tool’s ability to detect vulnerabilities has become larger

and able to cover all common vulnerabilities top 25 CWEs. The

tool will be developed in future work to also include dynamic

analysis of the code in order to give us more accurate results when

testing to detect vulnerabilities.

Acknowledgments

The authors are grateful to Computer Science Department at the

University of Mosul/ Iraq for the collaborative efforts that make

this work achieved and to the ICT Research unit at Computer

Center of University of Mosul/ Iraq, for the support during the

course of this work.

References

Alsamel, Y. A. (2023). VrT : A CWE-Based Vulnerability Report

Tagger. 2, 2–5.

Bojanova, I., Galhardo, C. E., & Moshtari, S. (2020). Input /

Output Check Bugs Taxonomy : Injection Errors in Spotlight.

1–10.

Cao, D., Huang, J., Zhang, X., & Liu, X. (2020). FTCLNet:

Convolutional LSTM with Fourier Transform for

Vulnerability Detection. Proceedings - 2020 IEEE 19th

International Conference on Trust, Security and Privacy in

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 135

Computing and Communications, TrustCom 2020, December

2020, 539–546.

https://doi.org/10.1109/TrustCom50675.2020.00078

Chen, Z., Chen, B., & Chen, L. (2020). An Empirical Study on

Dynamic Typing Related Practices in Python Systems. 83–93.

da Costa, F. H., Medeiros, I., Menezes, T., da Silva, J. V., da

Silva, I. L., Bonifácio, R., Narasimhan, K., & Ribeiro, M.

(2022). Exploring the use of static and dynamic analysis to

improve the performance of the mining sandbox approach for

android malware identification. Journal of Systems and

Software, 183. https://doi.org/10.1016/j.jss.2021.111092

Duan, X., Wu, J., Ji, S., Rui, Z., Luo, T., Yang, M., & Wu, Y.

(2019). Vulsniper: Focus your attention to shoot fine-grained

vulnerabilities. IJCAI International Joint Conference on

Artificial Intelligence, 2019-Augus, 4665–4671.

https://doi.org/10.24963/ijcai.2019/648

Fan, J., Li, Y., Wang, S., & Nguyen, T. N. (2020). A C/C++ Code

Vulnerability Dataset with Code Changes and CVE

Summaries. Proceedings - 2020 IEEE/ACM 17th International

Conference on Mining Software Repositories, MSR 2020, 508–

512. https://doi.org/10.1145/3379597.3387501

Fu, M. (2022). LineVul : A Transformer-based Line-Level

Vulnerability Prediction LineVul : A Transformer-based Line-

Level Vulnerability Prediction. In 19th International

Conference on Mining Software Repositories (MSR ’22), May

23â•fi24, 2022, Pittsburgh, PA, USA (Vol. 1, Issue 1).

Association for Computing Machinery.

https://doi.org/10.1145/3524842.3528452

Gulabovska, H., & Porkolab, Z. (2019). Survey on static analysis

tools of python programs. CEUR Workshop Proceedings,

2508(September), 22–25.

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 136

Guo, W., Huang, C., Niu, W., & Fang, Y. (2021). Intelligent

mining vulnerabilities in python code snippets. Journal of

Intelligent and Fuzzy Systems, 41(2), 3615–3628.

https://doi.org/10.3233/JIFS-211011

Id, P. Y., & Wang, X. (2024). Vulnerability extraction and

prediction method based on improved information gain

algorithm. 1–23.

https://doi.org/10.1371/journal.pone.0309809

Kang, W., & Son, B. (2022). Tracer : Signature-based Static

Analysis for Detecting Recurring Vulnerabilities. In

Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’22), November

7â•fi11, 2022, Los Angeles, CA, USA (Vol. 1, Issue 1).

Association for Computing Machinery.

https://doi.org/10.1145/3548606.3560664

Kiran, S. R. A., Rajper, S., & Shaikh, R. A. (2021).

Categorization of CVE Based on Vulnerability Software By

Using Machine Learning Techniques. International Journal of

Advanced Trends in Computer Science and Engineering,

10(3), 2637–2644.

https://doi.org/10.30534/ijatcse/2021/1581032021

Kiska, J. (2021). Static analysis of Python code. 1–48.

Kronjee, J., Hommersom, A., & Vranken, H. (2018). Discovering

software vulnerabilities using data-flow analysis and machine

learning. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3230833.3230856

Lin, C., Xu, Y., Fang, Y., & Liu, Z. (2023). applied sciences

VulEye : A Novel Graph Neural Network Vulnerability

Detection Approach for PHP Application.

Lin, G., Wen, S., Han, Q. L., Zhang, J., & Xiang, Y. (2020).

Software Vulnerability Detection Using Deep Neural

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 137

Networks: A Survey. Proceedings of the IEEE, 108(10), 1825–

1848. https://doi.org/10.1109/JPROC.2020.2993293

Mahyari, A. (2022). A Hierarchical Deep Neural Network for

Detecting Lines of Codes with Vulnerabilities. Qrs.

Monat, R., & Mine, A. (2020). Static Type Analysis by Abstract

Interpretation of Python Programs.

Nachtigall, M., & Bodden, E. (2019). Explaining Static Analysis

for Software Security – A Perspective.

Nembhard, F. D., Carvalho, M. M., & Eskridge, T. C. (2019).

Towards the application of recommender systems to secure

coding. Eurasip Journal on Information Security, 2019(1).

https://doi.org/10.1186/s13635-019-0092-4

Note, T. (2012). Available Online at www.jgrcs.info

DEFENDING AGAINST WEB VULNERABILITIES AND

CROSS-SITE SCRIPTING. 3(5), 61–64.

Piran, A. (2022). Vulnerability Analysis of Similar Code.

December 2021.

https://doi.org/10.1109/QRS54544.2021.00076

Shahab, A., Engineers, E., Alenezi, M., Technology, T. S., &

Nadeem, M. (2020). An automated approach to fix buffer

overflows. February, 3778–3788.

https://doi.org/10.11591/ijece.v10i4.pp3778-3788

Shuanghe, P., Peiyao, L. I. U., & Jing, H. A. N. (2019). A Python

Security Analysis Framework in Integrity Verification and

Vulnerability Detection. 24(2), 141–148.

Souza, L. De. (2020). A Proposal for Source Code Assessment

Through Static Analysis.

Sun, X., & Wang, Z. (2023). Intelligent Association of CVE

Vulnerabilities Based on Chain Reasoning. 28–34.

https://doi.org/10.3233/FAIA230788

Wunder, J., Kurtz, A., Eichenmüller, C., Gassmann, F., &

Al-Noor Journal for Information Technology and Cyber Security

December (2024); 1 (0): 113 - 138

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7

 138

Benenson, Z. (2024). Shedding Light on CVSS Scoring

Inconsistencies: A User-Centric Study on Evaluating

Widespread Security Vulnerabilities.

Ziems, N. (2021). Security Vulnerability Detection Using Deep

Learning Natural Language Processing.

