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Abstract 

The topic of security for computers is of significant importance. 

Over the past decade, countless cybercrimes have been executed 

by exploiting software flaws. This issue has led to considerable 

social stress, substantial losses, and higher interest in security. 

Vulnerabilities in applications developed in various programming 

languages can be identified using various methodologies and 

techniques. We can employ static or dynamic methods for analysis 

to detect vulnerabilities. Bandit is a tool for static analysis designed 

to identify security vulnerabilities in Python code, examining a 

defined range of issues. This study introduces an additional 

collection of vulnerabilities, specifically the top 25 CWE, to 

enhance the tool's detection capabilities. The approach involves 

analyzing Python code and constructing an Abstract Syntax Tree 

(AST) using the AST library in Python. 
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 By traversing the nodes of the tree and gathering information 

regarding the code's characteristics, potential vulnerabilities are 

identified based on predefined checks for each scenario. The tool's 

capability for predicting all the incorporated scenarios was 

demonstrated after the completion of the tests added to it. 

Keywords: python code analysis, software security, static 

analysis, vulnerability detection. 

Introduction 

Software development requires a critical practice of writing secure 

coding in order to ensure that the software is designed to be 

resistant to potential threats. This process requires that there be 

built-in security measures to prevent common problems in the 

coding life cycle such as unauthorized access, injection attacks, 

etc.(Nembhard et al., 2019). 

Software defects that are targeted and exploited in security attacks 

are called security vulnerabilities(Kiran et al., 2021). Security 

vulnerabilities have significant impacts on millions of consumers 

and threaten computer systems to operate securely(G. Lin et al., 

2020). Undetected vulnerabilities can be exploited by hackers and 

cause significant harm to users(Fan et al., 2020). 

Software analysis includes dynamic analysis and static analysis. 

Possible programming errors in the code, as well as security 

weaknesses, are discovered through static analysis if the process is 

completed without the need to execute the code(da Costa et al., 

2022) (Nachtigall & Bodden, 2019) 

Programming languages such as C and C++ are pivotal in the static 

analysis process because their type systems provide additional 

details to the analyst because they are static type systems, unlike 
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dynamic type systems such as Python, where there is an increasing 

demand for them(Gulabovska & Porkolab, 2019). 

There are many analysis tools currently available that can statically 

analyze code written in Python(Kiska, 2021). The current analysis 

tools that are widely used in static analysis of the Python 

programming language are pyflakes, mypy, pylint and others(da 

Costa et al., 2022). Another important tool used to find 

vulnerabilities in Python code is the bandit tool(Guo et al., 2021). 

CWE, which is a classification and organization system for 

common vulnerabilities, helps developers identify software 

vulnerabilities by assigning a single CWE identifier to each 

vulnerability(C. Lin et al., 2023). 

It has been observed that static analysis tools work to find 

vulnerabilities in software written in the Python programming 

language, as some of these tool’s focus on code styling issues and 

do not focus on security issues, and others focus on security issues, 

but they lack coverage of many common vulnerabilities. For 

example, the bandit tool does not detect many of the top 25 CWEs. 

The goal of the research is to add the top 25 common 

vulnerabilities (CWEs) to the bandit tool. After adding custom 

checks, the tool now covers a wider range of common 

vulnerabilities and is able to detect the top 25 CWEs. 

The remainder of this paper is structured as follows: Section 2 

covers related works. Section 3 demonstrates top 25 CWE and 

python. Section 4 describes the methodology. Section 5 includes 

results and discussion. Section 6 provides the conclusion. 

Related Works 

Static code analysis is a method used when we want to evaluate 

the source code without having to execute the programs. The 

purpose of the analysis is to discover errors, issues related to code 
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quality, and security vulnerabilities. It is of great benefit in 

evaluating the efficiency of programs and indicating the aspects in 

which programmers need to strengthen their skills to improve their 

programs(Souza, 2020). 

(Ziems, 2021) improved the detection of security vulnerabilities in 

software by applying advanced deep learning models, particularly 

transformer-based models such as BERT. The research treats 

source code as text and models the detection process as a natural 

language processing (NLP) problem. By leveraging these NLP 

techniques, the researchers aim to detect vulnerabilities more 

effectively and efficiently than traditional methods like static and 

dynamic code analysis, which are often inaccurate and inefficient. 

The study also explores the use of transfer learning from written 

English to source code, highlighting its effectiveness in classifying 

security vulnerabilities in C/C++ code. 

(Duan et al., 2019) developed an advanced system for detecting 

fine-grained software vulnerabilities in code with very slight 

differences between vulnerable and non-vulnerable versions. The 

study aims to improve the accuracy of vulnerability detection by 

introducing VulSniper, a model that uses an attention neural 

network to focus on critical features in the code. This approach 

allows VulSniper to effectively capture subtle distinctions in code 

that may lead to vulnerabilities, such as minor changes in 

conditions that could cause buffer overflows or resource 

management errors. The ultimate objective is to surpass the 

limitations of traditional static analysis methods, which often 

struggle with false positives and false negatives, by utilizing 

attention mechanisms and deep learning to enhance vulnerability 

detection accuracy, particularly for fine-grained issues. 

(Kronjee et al., 2018) combined data-flow analysis techniques with 

machine learning to create a static analysis method for detecting 
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software vulnerabilities, particularly SQL injection (SQLi) and 

Cross-Site Scripting (XSS) vulnerabilities in PHP applications. 

The study aims to improve the accuracy and efficiency of detecting 

these vulnerabilities by using control-flow graphs (CFGs) to 

extract features from code samples, which are then used to train 

various probabilistic machine learning classifiers. By leveraging 

both data-flow analysis and machine learning, the research seeks 

to address the limitations of existing static analysis tools and 

enhance the detection of vulnerabilities in real-world and open-

source software applications. 

(Cao et al., 2020) developed a deep learning-based method for 

detecting software vulnerabilities more efficiently and accurately. 

The researchers introduce a hybrid model that combines a 

convolutional neural network (CNN) with a bidirectional long 

short-term memory (Bi-LSTM) network, and apply a discrete 

Fourier transform (DFT) to convert source code into the frequency 

domain. This approach helps in capturing significant patterns in 

the code to better detect vulnerabilities. The key objective is to 

improve the detection of common software vulnerabilities, such as 

buffer errors and resource management errors, by focusing on both 

local and global features of the code, while also addressing 

challenges related to feature extraction and the diverse nature of 

vulnerabilities in modern software systems. 

(Mahyari, 2022) designed a deep learning-based method to detect 

software vulnerabilities in source code. Specifically, the research 

focuses on a hierarchical approach that first identifies whether a 

piece of source code is vulnerable and then pinpoints the exact 

lines of code responsible for the vulnerability. By using techniques 

inspired by natural language processing (NLP) and representing 

source code as binary vectors, the model leverages a bidirectional 

LSTM to capture dependencies between lines of code. The key 



Al-Noor Journal for Information Technology and Cyber Security 

December (2024); 1 (0): 113 - 138 

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7 
 

 118 
 

objective is to improve accuracy and reduce false alarms in 

detecting vulnerable lines of code, which is crucial for mitigating 

potential cyberattacks. 

(Piran, 2022) investigated the existence of security vulnerabilities 

in software that shares similar code, such as cloned or near-

duplicate code fragments. The study aims to empirically analyze 

vulnerabilities in C/C++ projects to determine whether the same 

security issues occur across applications that reuse or share similar 

code or business logic. By examining a dataset of 315 open-source 

projects, the researchers aim to identify common security flaws 

and assess the prevalence of vulnerabilities in similar code 

structures. Ultimately, the research seeks to provide insights for 

improving automated vulnerability detection tools by tailoring 

them to specific classes of vulnerabilities frequently found in 

cloned or similar code fragments. 

(Alsamel, 2023) proposed an automated tool that helps security 

engineers and developers classify and label software vulnerability 

reports with appropriate Common Weakness Enumeration (CWE) 

tags. The tool, called Vulnerability Report Tagger (VrT), leverages 

machine learning algorithms, specifically the FastText classifier, 

to automatically assign vulnerability types based on the 

descriptions found in the National Vulnerability Database (NVD). 

The purpose of VrT is to reduce the manual effort and potential 

errors involved in tagging vulnerabilities, streamline the 

vulnerability management process, and improve the prioritization 

of security fixes. This research aims to enhance the efficiency and 

accuracy of handling cybersecurity threats, making it easier for 

security professionals to manage and respond to new 

vulnerabilities. 

(Sun & Wang, 2023) improved the process of analyzing and 

understanding vulnerabilities by using a knowledge graph-based 
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system that links various vulnerability databases and infers hidden 

relationships between vulnerabilities. The research focuses on 

building a vulnerability knowledge graph from CVE, CWE, 

CAPEC, and other data sources to enhance vulnerability 

correlation and prediction. This knowledge graph, combined with 

chain reasoning, allows the researchers to detect complex, 

compound vulnerabilities and uncover hidden links between 

software products and their associated vulnerabilities. The main 

objective is to improve the accuracy and efficiency of vulnerability 

scanning and provide better insights for cybersecurity 

management. 

(Kang & Son, 2022) developed an advanced static analysis 

framework, named Tracer, for detecting recurring software 

vulnerabilities by focusing on both syntactic and semantic 

similarities in the code. The research aims to address the 

limitations of existing vulnerability detection methods, which 

primarily focus on syntactic similarities and fail to detect 

vulnerabilities that recur with different syntactic structures but 

share the same underlying behavior. Tracer uses taint analysis and 

inter procedural data dependency to identify vulnerable code 

patterns and create vulnerability signatures, allowing it to detect 

both known and semantically similar, recurring vulnerabilities in 

new programs. The main objective is to improve the accuracy, 

robustness, and scalability of vulnerability detection in large-scale 

software projects. 

(Id & Wang, 2024) suggested a method that improves the detection 

and prediction of software vulnerabilities by utilizing an enhanced 

information gain (IG) algorithm within a deep neural network 

(DNN) framework. The study aims to address the challenge of 

incomplete vulnerability data and improve both the accuracy and 

speed of vulnerability detection. By using techniques such as 



Al-Noor Journal for Information Technology and Cyber Security 

December (2024); 1 (0): 113 - 138 

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7 
 

 120 
 

Dropout to prevent overfitting, the model enhances its ability to 

extract and predict vulnerabilities effectively. 

Below is a set of analysis tools for Python code, along with an 

explanation of some of the features and capabilities of these 

tools(Kiska, 2021): 

1- Pylint: It detects errors, checks code smells, enforces coding 

standards, and provide refactoring. In addition, pylint calculates 

the complexity of the code and provides details of potential 

problems through a report. 

2- Pyflakes: This tool focuses its work on finding coding errors and 

its performance is faster than other tools because it does not impose 

a style check, thus avoiding many false positives. 

3- DeepSource: The tool provides code reviews and produces results 

with low false positive rates. It has an automatic repair feature, so 

it fixes problems automatically. The tool identifies issues such as 

unnecessary code, which leads to improved performance. 

4- SonarQube: This tool focuses on code quality and detects code 

smells, duplicate copying, and security vulnerabilities. The tool 

provides detailed reports on issues such as duplicate blocks and 

function complexity because it has a large set of rules for analyzing 

Python code. 

5- Bandit: It is a tool designed to find security vulnerabilities in code 

written in Python. It scans the code to find common vulnerabilities 

such as handling input insecurely, using weak encryption 

algorithms, etc. bandit has great adaptability because it accepts 

new checks to be added to it to meet the security requirements of 

developers. 

6- DeepCode: This tool uses machine learning in the analysis process. 

It identifies issues related to deprecated modules, unprotected 

calls, and the use of unsafe parsing processes. 

 Table 1 shows comparisons between these tools: 
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TABLE 1. Comparison for Static Code Analysis Tools 

Tool Focus 
False 

Positives 
Performance 

Style 

Checks 

Unique 

Features 

Bandit 
Security 

vulnerabilities 
Low Moderate No 

Security-

focused, 

plugin-based 

Pylint 

Code style, 

complexity, 

and errors 

Moderate 
Slow (high 

complexity) 

Yes (PEP8 

standards) 

Customizable 

limits 

(complexity 

and standards) 

Pyflakes Coding errors  Low Fast No 
Fast error 

detection 

DeepSource 

Code review, 

performance 

improvement, 

autofix 

Very Low Moderate 

Yes 

(Autopep8, 

Black) 

Autofix 

feature, 

integration by 

CI/CD 

SonarQube 

Code smells, 

technical 

debt, security 

vulnerabilities 

Moderate 

(depending 

on rules 

enabled) 

Slow 

(depending 

on rules 

enabled) 

Yes (by all 

rules 

enabled) 

Comprehensive 

code quality 

metrics 

DeepCode 

Real-time 

feedback by 

AI-driven 

analysis 

Low Fast No 

AI-based 

analysis, real-

time feedback 

Top 25 Cwe and Python 

A list that is compiled annually, the Top 25 CWE vulnerabilities 

highlights the software security flaws that are the most prevalent 

and potentially most serious. As a result of these vulnerabilities, 

which are weaknesses in the design or implementation of software, 

attackers have the ability to take advantage of them in order to 

cause damage to systems or obtain improper access to data. For the 

purpose of assisting in the prioritization of security efforts and the 
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development of methods for defense against attacks, the list is 

critically important for software developers and cybersecurity 

professionals(Wunder et al., 2024). 

As a result of the fact that they are the most widespread and severe 

security flaws in software that may be exploited by attackers, the 

Top 25 CWE vulnerabilities are extremely important. These 

vulnerabilities frequently result in major implications, such as the 

shutting down of the system, the unauthorized access of data, or 

the complete control over the system. Because they are simple to 

locate and exploit, the vulnerabilities are serious. Furthermore, 

they affect a wide variety of systems, which makes them frequent 

targets for attackers. The address of these vulnerabilities is critical 

for the maintenance of software security and the prevention of 

exploits and breaches that are significant(Fu, 2022). 

The CWEs particularly pertinent to Python comprise the 

following: 

1. CWE-787: Buffer Overflow – An interaction with an external 

library written in C or another lower-level language may 

continue to present buffer overflow vulnerabilities, despite the 

fact that Python's dynamic memory management assists in 

minimizing the danger of buffer overflows. Memory corruption 

and the likelihood of unauthorized code execution can arise as a 

result of buffer overflows, which occur when the memory 

capacity of the buffer is exceeded(Shahab et al., 2020). 

2. CWE-79: Cross-Site Scripting (XSS) – Web applications 

written in Python that do not effectively sanitize user inputs are 

susceptible to cross-site scripting (XSS) attacks. These attacks 

involve the injection of malicious scripts within web pages that 

are seen by other users. This could result in the theft of data or 

the hijacking of a session(Note, 2012). 
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3. CWE-20: Improper Input Validation – Is a widespread 

vulnerability in Python applications which do not perform an 

adequate check on the inputs provided by users. This 

vulnerability can result in a variety of potential exploits, such as 

injection attacks(Bojanova et al., 2020). 

For a number of different reasons, the dynamic 

typing, dependency on external libraries, and flexibility, the 

Python has substantial challenges when it comes to detecting 

vulnerabilities: 

1. Dynamic Typing: Within the Python programming language, the 

types of variables are not clearly specified. This flexibility might 

result in runtime mistakes and security vulnerabilities which are 

not discovered until the program is executed. The shortage of 

static type checking causes it difficult to detect issues such as 

type mismatches or accidental type changes at an early stage. 

This, in turn, increases the likelihood that bugs and 

vulnerabilities will go unnoticed until they produce a failure or 

a security concern(Chen et al., 2020). 

2. Flexibility: The permissive syntax of Python makes it possible 

to construct software quickly, but it also makes it simple to add 

security flaws. This is especially true when combined with 

complicated dynamic features such as dynamic attribute 

allocation or introspection. Due to this flexibility, automated 

vulnerability detection is made more difficult, and static 

analysis is rendered less effective(Monat & Mine, 2020). 

3. Reliance on External Libraries: An additional layer of security 

risk is introduced by the extensive environment of third-party 

libraries that Python provides. It is difficult to detect 

vulnerabilities within these libraries because of the different 

codebases and the difficulty of managing dependencies. 
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Vulnerabilities from these libraries might spread to programs 

that are dependent on them(Shuanghe et al., 2019). 

Methodology 

Design Overview 

In this work, a system was built, which is an expansion of the 

bandit tool, where checks were added to perform a test for 

common weaknesses (top 25 CWEs). The python code is 

received into the system and it analyzes the code, finds the 

weaknesses in it, and indicates the degree of severity and 

confidence for them. 

Rule Set Tailoring for Top 25 CWE 

For the purpose of ensuring that possible software vulnerabilities 

are recognized in an accurate and efficient manner, a set of 

processes was followed in order to build rules for evaluating code 

and finding software vulnerabilities. In order to develop a testing 

rule, the following fundamental procedures were carried out: 

Understanding the Intended Security Vulnerability 

To begin the process of developing a testing rule, the first thing 

you need to do is recognize and comprehend the vulnerability that 

you want to find. This was accomplished using the following 

studying: 

1. The nature and type of the vulnerability (such as SQL Injection, 

path traversal, or Buffer Overflow). 

2. How the vulnerability happens (for instance, the user entering 

data into the database without taking appropriate precautions). 

3. Consequences for exploiting the vulnerability include 

(unauthorized command execution, information sharing, etc.). 
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Identifying Code Patterns 

Upon identifying the vulnerability, the code patterns that might 

cause it were determined. This stage involved identifying the 

structures or behaviors analyzed in the code. for instance: 

- The ast library was utilized to perform an analysis of the source 

code and search for common patterns that cause SQL Injection 

vulnerabilities. This was done in order to identify instances of 

SQL Injection that occurred during the process of code analysis. 

Because untrusted input is injected inside SQL queries without 

adequate sanitization, these vulnerabilities occur. As a result, 

attackers are able to execute SQL queries that are not authorized. 

The following is a list of the discovery steps: 

1. Identifying untrusted inputs: Look for places in the code that 

take data from the user, like request.GET, request.POST, along 

with additional sources that can't be trusted. 

2. Search for SQL queries: It is important to check for SQL queries 

that were produced using string concatenation rather than by 

having parameterized queries. 

3. Verify proper sanitization: In the process of building SQL 

queries, it is imperative to make certain that potentially 

dangerous functions like .format(), +, or % aren't used with user 

input. 

For instance, if the next code snippet is inputted into the scanning 

tool:  

 
The result will indicate the potential presence of a SQL Injection 

vulnerability in the code. 



Al-Noor Journal for Information Technology and Cyber Security 

December (2024); 1 (0): 113 - 138 

DOI: https://doi.org/10.69513/jnfit.v1.i0.a7 
 

 126 
 

- Source code analysis was employed to identify instances of hard-

coded credentials by searching for patterns indicative of the direct 

inclusion of credentials, such as passwords, user names, and secret 

keys, within the code. This vulnerability is risky since it leads the 

system to exploitation if the attacker acquires access to the code. 

The steps for discovery are as follows: 

1. Determine potential locations for credential utilization: Identify 

variables that include terms like password, api_key, etc. 

2. Identify definitions of variables that explicitly include written 

credentials: Verify if these variables have been explicitly set in 

the code. 

3. Guarantee the lack of sterilization or suitable protection: 

Investigate the lack of any mechanism for data sterilization or 

secure downloading. 

For instance, if the next code snippet is inputted into the scanning 

tool: 

 
This will be demonstrated by the result, which will show that 

credentials are inserted right into the code. 

- Source code analysis was employed to identify instances of 

Missing Authorization by looking for patterns that signify the 

lack of requisite authorization. This vulnerability arises when 

the system permits users to execute activities or obtain 

information without verifying their requisite permissions. The 

steps for discovery are as follows: 

1. Determine points of protection that based upon authorization: 

Identify areas in the code that require protecting, such as 

accessing confidential information or executing critical 

operations. 
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2. Search for authorization checks: Examine for the existence of 

authorization functions, including check_permissions, 

is_authorized, as well as other tailored authorization decorators. 

3. Recognizing the lack of authorization: Identify instances where 

functions are executed or sensitive data is obtained without 

authorization verification. 

For example, if the following code snippet was entered into the 

tool for testing: 

 
On the basis of the result, it would be clear that authorization was 

absent. 

The dynamic typing of Python and its dependence on external 

libraries present numerous challenges that complicate 

vulnerability detection: 

• Dynamic Typing: Python does not require type declarations, 

allowing variables to alter their types during runtime. This 

complicates static analysis, as type-related defects or 

vulnerabilities, like type mismatches, might only become 

apparent during execution. The absence of static type checking 

may result in unnoticed faults until execution, hence elevating 

the likelihood of runtime mistakes or security vulnerabilities. 

• Reliance on External Libraries: There is a major risk involved 

because the Python ecosystem is primarily dependent on 

libraries that are provided by third parties. The management of 

dependencies is difficult, and libraries have the potential to 

expose vulnerabilities. As a result of the enormous number of 

dependencies, it is difficult to verify that all of the libraries that 
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are being used are safe and free from bugs. This is because 

potential security flaws can be concealed within external 

packages. 

Integration with Bandit 

The architecture needs to take into consideration a number of 

different things in order to successfully incorporate CWE rules 

with the Bandit tool for identifying security vulnerabilities in 

Python. The following is an in-depth explanation to the 

architecture, with particular focus on the alterations that are 

required: 

1. Modifications to AST Traversal 

Adding Hooks: In order for Bandit to be able to activate CWE-

specific rules, its AST traversal scheme will need to be 

modified. Hooks are used to map CWE patterns with particular 

AST nodes. For example, hooks can be used to identify 

vulnerable functions such as eval() or exec(), which could be 

potential indicators of a vulnerability. 

2. Construction of Plugins for the CWE Rules 

- The CWE Rules as Individual Plugins: A different plugin will 

be used to implement each CWE rule. These plugins will check 

the source code for security flaws associated with that particular 

CWE. 

- Configurable Rules: Users must have the capability to either 

enable or disable particular CWE rules via configuration files to 

tailor the scanning procedure. 

- Severity Levels: Every CWE rule plugin has to contain a 

severity rating (high, medium, low) determined by the potential 

effect of the vulnerability. 
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3. API Modifications 

CWE Rule Configuration: The Bandit API requires an upgrade 

to facilitate the activation and configuration of CWE rules. 

4. Custom Hooks 

Support for Custom Plugins: It should be possible for 

developers to construct and register their own custom CWE 

rules using the API. This is something that can be accomplished 

by extending the design of Bandit's plugins, which will allow 

users to produce their own security tests. 

5. Improved Reports 

- CWE-Specific Reports: It is important for reports to include 

CWE identifiers and descriptions for each vulnerability that has 

been discovered. Additionally, reports should include links to 

CWE documentation in order to offer developers with additional 

context. 

- Incorporation with Vulnerability Databases: Bandit should 

make it possible to link vulnerabilities that have been discovered 

to external databases, such as the CWE database maintained by 

MITRE, in order to provide more detailed remedial assistance. 

A custom plugin is created in order to work on discovering a 

specific case of CWEs that was not originally present in bandit. 

This is done by understanding the vulnerability and the reasons 

that lead to it. The custom plugin is saved in a Python file with 

a specific name that indicates the scan it is performing, and it is 

called through the main file (main_code.py) when there is an 

analysis process to discover vulnerabilities in a specific code. 

Dataset for Testing and Verification 

For the purposes of testing and Verification, the datasets were 

selected using open-source Python projects and known vulnerable 
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codebases (for example, vulnerable web applications and GitHub 

repositories). 

Evaluation Criteria 

• After custom plugins were added to the analysis tool to detect cases 

of the top 25 CWEs, the detection range of the tool expanded and 

it is able to cover all cases of the top 25 CWEs. 

• The tailored tool has good capabilities and outperforms other 

analysis tools such as Pylint, Flake8 and others in discovering 

vulnerabilities, especially security issues. 

Results and Discussion 

The findings in table 2 demonstrate a tool's efficacy for 

determining the Top 25 CWE vulnerabilities: 
 

TABLE 2. The results. 

F1 

Scor

e 

Recal

l 

Precisio

n 

 

Accurac

y 

F

N 

T

N 

F

P 

T

P 

CWE 

Name 

CW

E ID 

0.90 1 0.83 0.90 0 4 1 5 

Cross-

Site 

Scripting 

(XSS) 

CWE

-79 

0.83 1 0.71 0.80 0 3 2 5 
SQL 

Injection 

CWE

-89 

0.80 0.8 0.8 0.80 1 4 1 4 
Path 

Traversal 

CWE

-22 

0.90 1 0.83 0.90 0 4 1 5 

Cross-

Site 

Request 

Forgery 

CWE

-352 

0.88 0.8 1 0.90 1 5 0 4 

Improper 

Input 

Validatio

n 

CWE

-20 
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where: 

1. CWE ID: The distinct identifier given to every vulnerability within 

the Common Weakness Enumeration. 

2. CWE Name: The name or brief description of the vulnerability. 

3. True Positives (TP): The number of accurately recognized 

vulnerabilities. 

4. False Positives (FP): The number of vulnerabilities that were 

incorrectly identified. 

5. True Negatives (TN): the number of samples with no 

vulnerabilities undetected. 

6. False Negatives (FN): The number of vulnerabilities which were 

not found by the tool but are present in the system. 

7. Accuracy: It is the ratio between the number of correct predictions 

over the total number of predictions. 

8. Precision: The precision with which the tool finds each 

vulnerability. 

9. Recall: The recall or sensitivity of the tool for each vulnerability. 

10. F1 Score: Taking the harmonic mean for recall and precision, we 

can see how well the tool handled each vulnerability as a whole. 

Here is how the metrics were computed(C. Lin et al., 2023): 

- Precision is computed as: Precision = TP / ( TP + FP) 

- Recall is computed as: Recall = TP / ( TP + FN) 

- Accuracy is computed as: (TP + TN) / (TP + FP + TN + FN) 

- F1 Score is computed as: F1 Score = 2 * (Precision * Recall) / 

(Precision + Recall) 

Bandit's strengths for discovering vulnerabilities involve the 

following: 

1. Effective automated analysis: It discovers Python vulnerabilities, 

including input injections and insecure functions and others. 

2. Python-focused: It finds security flaws that are unique to this 

language in an accurate manner. 
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3. Comprehensive scanning: A large variety of common security 

flaws are addressed. 

4. Customizable checks: Customizing checks to match the unique 

requirements of each project is made possible. 

5. CI/CD integration: The integration of this tool into development 

pipelines is simple, and it guarantees continuous security. 

Considering all of these advantages, Bandit is a highly efficient 

tool for improving code security. 

The enhanced capability of Bandit to discover CWE vulnerabilities 

which are generally challenging to detect in Python consist of 

multiple aspects: 

- Analysis of external libraries: Bandit can find dangerous uses of 

external libraries, and that is hard to do by hand. 

- Identification of dealing with files vulnerabilities: It detects flaws 

in file management, including unsafe path handling, and this may 

result in vulnerabilities that allow Path Traversal attacks. 

- Identification of input injection vulnerabilities: Bandit detects 

regions sensitive for inputting injection vulnerabilities, which 

might be challenging to identify without meticulous code 

examination. 

- Identification of risky function usage: It identifies the utilization 

of risky functions or methods, such as eval, which may be 

vulnerable to exploitation when untrusted inputs are provided. 

- Management of environmental variables and sensitive keys: 

Bandit is able to identify instances of sensitive variables or secret 

keys being leaked in the code, which is an issue that is frequently 

missed during the development process. 

Because of these features, Bandit is a powerful tool for detecting 

vulnerabilities that are difficult to identify, especially on projects 

that are large or complex. 
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Utilizing the Bandit tool to identify vulnerabilities associated 

with the CWE Top 25 may present challenges in mitigating false 

negatives or false positives. These instances include: 

1. Limited contextual analysis: Bandit employs static analysis, which 

may result in an incomplete contextual awareness of variable or 

function utilization during runtime. This may lead to false 

positives, like identifying a non-existent threat due to inadequate 

comprehension of dynamic data flow. 

2. Logical vulnerabilities: Business logic issues, including improper 

permission or logical validation mistakes, are challenging to 

identify with tools like Bandit, as they necessitate an in-depth 

knowledge of an application's context and objectives. This could 

result in false negatives. 

3. Highly strict vulnerability detection: Bandit may exhibit excessive 

sensitivity to particular vulnerabilities, such as the utilization of 

functions like eval or exec, which could lead to false positives 

whenever these functions are employed correctly and securely in 

specific scenarios. 

4. Resource and memory management: Resource management 

vulnerabilities, such as memory or file leaks may be complicated 

and hard to identify using static analysis, resulting in false 

negatives. 

5. Use of external libraries: Bandit may encounter difficulties in 

detecting vulnerabilities within external libraries or those arising 

from interactions between numerous libraries, particularly when 

the source code of these libraries is inaccessible for examination, 

resulting in false negatives. 

6. Complex input validation: If Bandit uses bespoke techniques for 

input validation, it is possible that it will overlook vulnerabilities 

that need deep input validation. Some instances of these 

vulnerabilities include SQL injection and cross-site scripting. It is 
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possible that this could result in false negatives or false positives 

when the validation for the input is not made explicitly visible. 

Future enhancements will involve the incorporation of extra CWEs 

and the development of future Python versions. 

Conclusion 

After work was done on adding a set of tests that detect cases of 

the top 25 CWEs to the bandit tool, which is one of the analysis 

tools that performs static analysis on codes written in the Python 

language and which focuses when analyzing security issues in the 

code, the tool’s ability to detect vulnerabilities has become larger 

and able to cover all common vulnerabilities top 25 CWEs. The 

tool will be developed in future work to also include dynamic 

analysis of the code in order to give us more accurate results when 

testing to detect vulnerabilities. 
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